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Figure 1. We present a pipeline that enables the automatic segmentation of distractors in photos using a single click. With just one click,
our pipeline can detect and mask the distracting object in the photo and identify other similar objects that may also be causing distraction.
We can then use popular photo editing tools such as Adobe Photoshop’s ‘Content-Aware Fill’ to remove the visual distractions seamlessly.
Each triad shows the input images with a click, segmentation results, and photo editing performance.

Abstract
In photo editing, it is common practice to remove vi-

sual distractions to improve the overall image quality and
highlight the primary subject. However, manually select-
ing and removing these small and dense distracting regions
can be a laborious and time-consuming task. In this pa-
per, we propose an interactive distractor selection method
that is optimized to achieve the task with just a single click.
Our method surpasses the precision and recall achieved
by the traditional method of running panoptic segmenta-
tion and then selecting the segments containing the clicks.
We also showcase how a transformer-based module can
be used to identify more distracting regions similar to the
user’s click position. Our experiments demonstrate that
the model can effectively and accurately segment unknown
distracting objects interactively and in groups. By signif-
icantly simplifying the photo cleaning and retouching pro-
cess, our proposed model provides inspiration for explor-
ing rare object segmentation and group selection with a
single click. More information can be found at https:
//github.com/hmchuong/SimpSON .

1. Introduction

Both professional photographers and casual users often
require efficient photo retouching to enhance the quality of
their images. One essential aspect of this task is the removal
of visual distractions from photos [7]. These distractions
can take various forms, such as unexpected pedestrians, ob-
jects that are cropped out of the photo’s edge, dirty spots
on the ground, repeated outlets on a wall, or even colorful
and blurry lens flare. These distractions can be challenging
to categorize due to their diverse appearance. As a result,
users tend to select and mask them entirely and use photo
editing software such as Photoshop to remove them.

Segmentation is necessary for photo cleaning tasks be-
cause rough masks may not be suitable for all scenarios.
Accurate masks are required in situations where distractors
are touching the main foreground subjects or where distrac-
tors are small but dense in the image. User-drawn rough
masks can result in the deletion of too much background
texture when connected. In other cases, users may have a
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mask that covers the entire object but does not change the
background too much. In all scenarios, our findings suggest
that for inpainting, a tiny dilation from a highly accurate
mask produces better background preservation and fewer
leftover pixels of distractors. This finding is consistent with
most of the existing inpainting models.

The process of manually masking distracting elements
in a photo can be a tedious and time-consuming task. Users
often seek an automated tool that can efficiently select and
segment all distractors. One approach is to train an instance
segmentation model like Mask-RCNN [11] to detect and
segment distractors in a supervised manner. However, iden-
tifying distractors can be subjective, and collecting datasets
requires scientific validation of the distractor annotations to
ensure that most users agree. For instance, Fried et al. [7]
invited 35 users to mark distractors on a single image and
received varying feedback. Even with a model that detects
distractors, it may not always satisfy users’ preferences.
Therefore, tasks like these should rely heavily on user in-
teraction, such as allowing users to click and decide where
to retouch photos based on their own preferences.

Our goal is to propose a single-click distractor seg-
mentation model. With the rapid development of panop-
tic segmentation technologies like PanopticFCN [20] and
Mask2Former [5], can we utilize state-of-the-art models to
retrieve distractor masks by clicking on the panoptic seg-
mentation results? Unfortunately, most distractors belong
to unknown categories, and some are tiny, making them dif-
ficult to segment using models [2, 13] trained on datasets
such as COCO [21], ADE20K [31], or Cityscapes [6] with
a closed-set of categories. Qi et al. proposed entity segmen-
tation [24] to train panoptic segmentation in a class-agnostic
manner to address the long-tail problem, but it still may not
be guaranteed to separate all regions in the photos.

What if we use clicks as the input guidance for seg-
mentation? Interactive segmentation models are closely re-
lated to our task, and recent works like FocalClick [4] and
RiTM [26] have achieved practical and high-precision seg-
mentation performance. However, interactive segmentation
aims to use multiple clicks, including positive and negative
ones, to segment larger foreground objects accurately, espe-
cially the boundary regions. In our task, we focus more on
medium to small distracting objects and only require a sin-
gle positive click to select semi-precise masks for inpainting
purposes. The difference in our goal makes it challenging
to follow the problem definition of interactive segmenta-
tion. Additionally, previous interactive segmentation mod-
els cannot select objects in groups, whereas most of our dis-
tractors are repeated, dense, and evenly distributed across
photos.

This paper addresses the two challenges of accurate one-
click universal class-agnostic segmentation and efficient
similarity selection. Our proposed method can significantly

reduce the photo retouching process from hours (e.g., 100+
clicks) to minutes (e.g., 1-2 clicks) when removing dense
and tiny distractors. Firstly, we optimize the click-based
segmentation model to accurately segment distractor-like
objects with a single click. This is achieved by utilizing the
entity segmentation [24] method to discard category labels
and using single-click embedding to guide the segmenta-
tion of a single object. Secondly, we design a transformer-
based Click Proposal Network (CPN) that mines similar
distractor-like objects within the same image and regress
click positions for them. Lastly, we rerun the single-click
segmentation module using the proposed clicks to generate
the mask and verify the similarity among the selected ob-
jects via the Proposal Verification Module (PVM). We also
run the process iteratively to ensure that more similar ob-
jects are fully selected. In summary, our contributions con-
sist of three main aspects:

• We introduce a novel one-click Distractor Segmenta-
tion Network (1C-DSN) that utilizes a single-click-
based approach to segment medium to small distract-
ing objects with high accuracy. Unlike other interac-
tive segmentation methods, our model targets the seg-
mentation of distracting objects with just one positive
click. Our model is capable of generalizing well to ob-
jects of any rare categories present in the photos.

• We propose a Click Proposal Network (CPN) that
mines all similar objects to the user’s single click. The
proposed clicks are then reused in the segmentation
model, and their similarity is verified using the Pro-
posal Verification Module (PVM). This allows for the
group selection of distracting objects with one click.

• We further explore running the selection process iter-
atively to fully select similar distractors with slightly
diverse appearances. Our proposed distractor selection
pipeline, which we call ’SimpSON,’ significantly sim-
plifies the photo retouching process. By using Simp-
SON, users can remove distracting objects in their pho-
tos quickly and easily with just a few clicks.

2. Related works
Visual Distraction in Photography Visual distracting el-
ements in photos are elements that attract users’ attention
but are not the primary subject of the photo. However, ac-
cording to [7], the saliency map [14, 16–19] may not be
highly correlated with visual distractors because the main
subject usually has the peak in the attention map. Although
efforts have been made to detect and retouch scratches [28],
noise, and dirty dots in photos, and automatic and interac-
tive face retouching [29] has already been widely deployed
in commercial products, only a few research works [1] have
targeted automatic general distractor detection and editing



due to the high variance of distractor categories and appear-
ances. In this work, our aim is to develop an interactive dis-
tractor selection and masking method in photos, along with
automatic grouping and selection of all similar distractors.

Interactive Segmentation Interactive segmentation in-
volves allowing users to provide a small amount of inter-
action to complete the target segmentation. Xu et al. [30]
proposed the first deep learning-based segmentation and in-
troduced positive and negative clicks as inputs. BRS [15],
and f-BRS [25] introduced online learning to optimize the
segmentation results, while FCA-Net [23] by Lin et al. fo-
cuses more on the initial click and uses feature attention to
improve the segmentation results. RiTM [26] generates the
following segmentation by fully utilizing the masking re-
sults from previous iterations, while CDNet [3] presented
how to use self-attention to propagate information among
positive and negative clicks. FocalClick [4] revisited a se-
ries of interactive segmentation techniques and proposed to
use local inference for a more efficient and deployment-
friendly network. In this paper, we draw from the experi-
ence of interactive segmentation to use clicks as user in-
puts. However, due to the nature of distractor removal
tasks in photo retouching and cleaning use cases, users pre-
fer to use an undo operation if the model over-predicts the
mask, instead of switching between positive and negative
clicks. Additionally, distractors are usually smaller than
foreground objects, so we redefined our task with only pos-
itive clicks and optimized the model with fewer positive
clicks. Furthermore, previous works did not allow users to
make group selections via self-similarity mining, while it is
a highly demanded user need for distractor removal, which
we address in our proposed method.

3. Methodology: SimpSON

Figure 2 shows the overall pipeline of the proposed
SimpSON pipeline. It consists of a feature extraction back-
bone, a single-click Distractor Segmentation Network (1C-
DSN), a similarity Click Proposal Network (CPN) designed
for mining all the similar clicks, and a Proposal Verification
Module (PVM) to check the similarity of the proposed click
positions. The process can be run iteratively.

3.1. One-click Distractor Segmentation Network
(1C-DSN)

Motivation. When it comes to visual distractors in users’
photos, they often come in all shapes and sizes with dif-
ferent appearances. We don’t always know what these ob-
jects are, or how big or small they might be. To tackle this
challenge, we need an interactive segmentation model that
is highly adaptive, especially when dealing with unfamil-
iar classes or small and medium-sized objects. It should be

able to respond to clicks at any position, even if they fall on
rare or unexpected objects, like cigarette butts, puddles, or
bird droppings on the ground. To achieve this, we need to
ensure that our model is optimized for high recall, so that
users can remove unwanted objects with just one click.

Difference with Previous Interactive Segmentation.
When designing our pipeline, we imagined that users might
wish to remove many distracting elements. For that sce-
nario, we found it more intuitive and efficient to use only
positive clicks in an iterative removal workflow, which
could be particularly suited for mobile apps. As discussed
in section 2, recent interactive segmentation works are de-
signed for precise object segmentation with multiple pos-
itive and negative clicks. We found state-of-the-art tools
like [4,26] are not friendly to small and medium object seg-
mentation with only a few positive clicks. However, for dis-
tractor selection tasks, many objects of small size should be
easier to choose with one click. Larger and medium distrac-
tors had better be quickly selected with few positive clicks.
So the major difference between our segmentation model
and previous works is we do not use negative clicks and
fully optimize our models with fewer positive clicks.

Network Structure. Figure 2 shows the network struc-
ture of the single-click distractor segmentation network.
Given an image I ∈ RH×W×3, the feature extractor net-
work provides a pyramid feature map: F = {X1, ..., XN}
with Xi ∈ Rhi×wi×d and H > h1 > ... > hN ,W >
w1 > ... > wN . For each feature level, we pair it with a
binary click map Ici ∈ {0, 1}h

i×wi

where Ici x,y = 1 indi-
cates the click at spatial location (x, y) in Ici . The click-
embedded feature map X ′i ∈ Rhi×wi×(d+c) is then com-
puted as X ′i = Xi ⊕ convi(I

c
i ), where ⊕ indicates the

concatenation along the feature dimension and convi is a
mapping function which projects Ici to Rhi×wi×c.

After obtaining the groups of click-embedded feature
map X ′i , we feed them to the detection head and segmen-
tation head. We modify the bounding box filtering strategy
by considering only keeping the boxes that overlap with the
click positions. In this paper, we follow Entity Segmenta-
tion [24] to design the detection and segmentation heads.
The segmentation module finally outputs multiple binary
segmentation masks Mj ∈ {0, 1}H×W corresponding to
the user click positions. The 1C-DSN is trained with sim-
ilar loss functions as in Entity Segmentation, which com-
bines detection loss from FCOS [27] and the DICE loss
from Entity Segmentation [24]. The design of the detection
and segmentation parts can be replaced with any two-stage
segmentation frameworks [11].
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Figure 2. The overview of SimpSON framework with 1C-DSN, CPN and PVM modules. It consists of a feature extraction backbone, a
single-click Distractor Segmentation Network (1C-DSN), a similarity Click Proposal Network (CPN) designed for mining all the similar
clicks, and a Proposal Verification Module (PVM) to check the similarity of the proposed click positions. The process of finding similar
distractors can be run iteratively to fully generate the masks.

3.2. Click Proposal Network (CPN)

In situations where there is only one instance of a dis-
tractor, the 1C-DSN model can be sufficient for accurately
segmenting it out. However, in many cases, we may come
across multiple instances of distractors that share similar
categories and appearances. In such scenarios, users would
prefer to be able to select all of these instances with just
a single click. To address this, we have designed a self-
similarity mining module that can effectively identify all the
distractors that are similar to the user’s click, thus enabling
them to remove them all in one go.

We propose this Click Proposal Network (CPN) to
mine similar regions using cross-scale feature matching and
regress the click positions from the high-confident regions.
Then we can feed those click coordinates back to our 1C-
DSN for masking to obtain the masks of all the similar dis-
tractors. The design of the Click Proposal Network (CPN)
is shown in Figure 2. The input to the CPN is a single query
mask predicted from the previous 1C-DSN corresponding
to the user’s single click. We utilize three levels of fea-
ture maps with the spatial resolution to be 1

4 , 1
8 , and 1

16
of the input image size. For the given query mask region,
we apply ROI-Align [11] to extract features from the three
levels of maps, resize them to k × k × d, where k = 3 is a
hyper-parameter for query size and d is the dimension of the
features, and then apply the binary query mask to zero-out
non-masking feature regions. We then obtain 3×k2 feature
vectors for similarity comparison with the original feature
maps. We feed the query vectors into a cascade of trans-
former decoder layers L1, L2, and L3, where each layer

takes the keys and values from different levels of feature
maps. We finally use the obtained aggregated feature vector
to conduct spatial convolution with the largest feature map
to obtain the prediction click position heatmap.

During training, we follow CenterNet [32] to generate
the ground truth heatmap using Gaussian filtering of the
click map. The kernel size of the gaussian filter is set to the
minimum value of the height and width of each mask. The
module is then trained using a penalty-reduced pixel-wise
logistic regression with focal loss as in CenterNet. During
inference, we apply the Non-Maximum Suppression (NMS)
to the heatmap to keep only the maximum value within a
s × s window and choose all the clicks having confidence
larger than τc. Empirically, we set s = 32 and τc = 0.2.

3.3. Proposal Verification Module (PVM)

To avoid false positive proposals in the heatmap and
click map, we propose using a Proposal Verification Mod-
ule (PVM) to ensure that the selected click positions are
highly similar to the user’s clicks. This module performs
pairwise comparisons between the generated masks and the
initial click, and removes any click proposals that generate
a mask that is significantly different from the initial query
mask using a threshold.

Specifically, we first feed all the click proposals into the
1C-DSN to generate separate instance masks for each click
position. We refer to the mask of the initial user click as
the target mask and all the other proposed masks as source
masks. Figure 3 shows the module structure of PVM and
the process of comparing two distractors. Given the origi-
nal image I , the featuresX1, which is 1

4 of the spatial image
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Figure 3. Proposal Verification Module (PVM). Given the original
image I , the features X1, and the segmentation mask M , we ex-
tract the region of interests from them. We then concatenate and
feed the features from I , X1 and M to obtain the 1D feature em-
bedding, zt for the target and zs for the source. The Euclidean
distance between them is fed to the fully-connected layer with a
sigmoid activation to output the similarity score from 0 to 1.

resolution, extracted from the pre-trained feature backbone
in the 1C-DSN, and the segmentation mask M , we extract
the region of interests from them. To preserve the aspect
ratio of the objects, we extend the bounding box to square
and use ROI-Align [11] to extract pixels or features. In this
paper, we resize the cropped image patch to 224× 224 and
feed it into a lightweight feature extractor, ResNet18 [12].
We then concatenate the image features (from I), backbone
features (from X1), and resized masks (from M ) together
and feed them into neural layers to obtain the 1D feature
embeddings, zt for the target and zs for the source. No-
tice that we also add the scaling factor wb

224 to guide the em-
bedding learning, where wb is the bounding box size. The
Euclidean distance between zs and zt is input to the next
fully-connected layer with a sigmoid activation to output
the similarity score from 0 to 1.

In training, we randomly sample pairs from the same im-
age. A pair is considered positive if it is drawn from the
same copy; otherwise, it will be a negative pair. Besides the
binary cross entropy LBCE is computed on the last output
with the pair labels, the max-margin contrastive loss [10]
Lcon is integrated on feature embedding zt, zs to make the
model learning features better. The final training loss is a
linear combination L = Lcon+LBCE . In testing, the PVM
classifies each mask proposal with its exemplar by thresh-
olding the similarity score. In our experiments, we choose
0.5 as the threshold.

3.4. Iterative Distractor Selection (IDS)

We further run an iterative process to sample more sim-
ilar distractors to ensure that we entirely select all the dis-
tractors similar to the initial click. The details pseudo-code
is shown in Algorithm 1. We update the Me with the cor-
rect masks for each iteration and progressively add high-

confidence clicks to the result. By updating Me, we can
avoid incorrect similarity findings caused by the incomplete
initial exemplar mask. Picking top-k clicks and PVM mod-
ule is essential in reducing false positive rates of CPN. In
our experiments, we choose a kernel size of 5 for NMS,
N = 5, k = 10, and m = 3.

Algorithm 1: IDS: Iterative Distractor Selection
Data: Minit (Initial Mask), Me (Examplar Set),

Macc (Accepted Masks), Cacc (Accepted
Clicks), N (maximum iteractions)

Result: Macc, Cacc

itr ← 0;
Me =Minit;
Macc ← {Minit};
Cacc ← ∅;
while itr ≤ N do

Generate Heatmap Using Me in CPN;
Apply NMS to obtain clicks Cnew;
Remove Clicks from Cnew if within Macc;
C ′new ← top-k clicks with confidence ≥ 0.2;
Cacc ← Cacc + C ′new;
Pass Cacc to 1C-DSN and Run PVM for Mnew;
Macc ←Mnew;
Me ← top-m confident masks;

end

4. Dataset Preparation
Public Datasets We conducted single-click segmenta-
tion experiments on the public COCO Panoptic and LVIS
datasets. We pre-trained our model on the COCO Panop-
tic dataset, which contains 118,287 images, and fine-tuned
it on the LVIS dataset, which contains 1,270,141 objects
across 99,388 images. Since there is some overlap between
the LVIS validation set and the COCO train set, we only
used 4,809 images with 50,672 instances from the original
LVIS validation set for our evaluation.

Self-Collected Distractor Datasets To gain a better un-
derstanding of the distractors in users’ photos and im-
prove the quality of our masking, we curated and anno-
tated a dataset of distractor images. We began by creat-
ing a list of common distractors found in photos, such as
distracting people, shadows, lens flare, cigarette butts on
the floor, construction cones, and so on. We then collected
images from various public image websites, including but
not limited to Flickr, Unsplash, and Pixabay, among oth-
ers. To annotate our dataset of distractor images, we re-
cruited three professional photographers to manually select
and mask the distracting regions in each image that affect
its overall aesthetic appeal. We found that having three



annotators was sufficient to label all the distractors in a
given photo. In total, our dataset contains 21,821 images,
of which we used 20,790 images containing 178,815 dis-
tracting instances for training, and 1,031 images contain-
ing 8,956 instances for validation and evaluation. We have
named our distractor dataset “Distractor20K” and the eval-
uation dataset “DistractorReal-Val” in this paper.

Data Synthesis for Similar Distractors Mining During
the process of collecting our dataset, we observed that it is
quite common for small, similar distractors (like bird drop-
pings on the ground) to coexist in a single photo. However,
our annotators may not be able to completely mask them.
To our knowledge, there is no public dataset that includes
annotations for these repeated distractors that we could use
to train and evaluate our CPN model. Therefore, we propose
a procedure to synthesize and generate similar distractors.
This approach is inspired by [8], which demonstrated that
copy-pasting can be an effective data augmentation tech-
nique for instance segmentation tasks.

To synthesize additional distractor data for our “Dis-
tractor20K” dataset, we utilized instances from the LVIS
dataset and adopted the Mask2Former [5] approach to ob-
tain semantic segmentation masks of the images. We only
synthesized distractors within the same semantic regions,
including ground, ceiling, wall, sky, sea, and river, as can-
didate regions. We first chose to copy objects that were
either existing annotated distractors within those candidate
regions or from the LVIS dataset. The LVIS examples were
added to ensure a minimum of three objects to copy for each
region, and the ratio between the objects and semantic re-
gions determined the number of copies with a maximum
of 10. We then iteratively placed the object at the maxi-
mum position in the distance map of the semantic region
and recomputed the distance map after each iteration. In
total, we obtained “DistractorSyn14K” with 14,264 images
and 287,150 instances, which were used to train the CPN
and PVM modules. We also created an evaluation dataset
of 531 images, which we named “DistractorSyn-Val,” con-
taining 1,188 images with 10,980 instances.

5. Experiments
5.1. Implementation details

1C-DSN Training Our 1C-DSN follows the structure of
Entity Segmentation [24]. Entity Segmentation followed
FCOS [27] to utilize P3 to P7 in the feature pyramid for de-
tection and kernel prediction and used P2 for masking. Here
Pi denotes the features having 1

2i of the spatial resolution of
the input image. In our work, we intended to detect and find
more medium and small distractors, so we utilized P2 to P5
features for both detection and segmentation. As described
in section 3.1, we concatenate additional channels from the

(a) PR on LVIS Validation Set. (b) PR on DistractorReal-Val.

Figure 4. Precision-Recall (PR) curve on the validation dataset
comparing the baseline and our proposed single-click based seg-
mentation.

click map to the pyramid feature, and the channel number
is 32. During training, we initialized the model from Entity
Segmentation pre trained on COCO Panoptic Dataset [22],
and finetuned it on LVIS dataset [9] in 4 epochs. For a better
masking quality on distractor-like objects, after we obtained
the model trained on LVIS, we also finetuned it on our Dis-
tractor20K dataset in 12 epochs. Our model was evaluated
on both the LVIS validation set and the DistractorReal-Val
dataset.

We randomly selected at most 50% of the instances dur-
ing training to reduce the false positive rate and make the
prediction results better correlated with the input click po-
sitions. For each instance, we randomly sampled 1-5 clicks
by computing the distance transform and randomly putting
the click around the center of the objects.

CPN and PVM Training The CPN and PVM were
trained on our synthetic distractor dataset containing many
groups of similar distractors within one single image. To
preserve the masking quality and avoid it from being af-
fected by the fake masks and learning from composition ar-
tifacts, we freeze the 1C-DSN network and the backbones
and reuse the learned feature pyramid. In CPN, we reused
the features P2 to P4. In PVM, we only used P2 for feature
extraction. When training the CPN, we randomly picked the
target click, and the ground truth will be the groups of in-
stances similar to the target object. While training the PVM,
we randomly selected pairs of instances within the same im-
age and assigned the labels according to their group identity.
We constantly utilized 1C-DSN to generate masks for CPN
and PVM during training. Both modules are trained in 14
epochs with an initial learning rate of 0.0001 for CPN and
0.005 for PVM, decreasing ten times at epochs 11 and 13.
They are also trained with 8 A100 GPUs with batch size 16.

5.2. Evaluation on 1C-DSN

Click Embedding To evaluate the importance of click
embedding for improving the performance, especially the
recall rate of the model, we compared it with a baseline that
was trained without click embedding as the input. We use
the same click positions when comparing them. But for the



Backbone Click Embedding AP APs APm APl

R101 30.7 20.6 47.0 27.9
R101 X 35.5 25.8 53.1 31.5

MiT-B3 33.2 22.5 50.6 30.2
MiT-B3 X 38.5 27.8 57.1 35.3

Swin-L 35.1 24.9 53.9 30.2
Swin-L X 40.2 31.1 59.0 35.1

Table 1. Single-click segmentation on LVIS validation set. All
models are pretrained on COCO Panoptic 2017 dataset.

Backbone Click Embedding AP APs APm APl

R101 25.2 18.3 34.4 28.1
R101 X 29.9 23.5 39.2 32.7

MiT-B3 26.2 18.6 35.9 28.3
MiT-B3 X 32.2 25.1 43.3 35.9

Swin-L 28.5 23.0 36.3 32.5
Swin-L X 34.0 28.2 41.9 38.0

Table 2. Single-click segmentation on Distractor validation set.
The click-embedding module outperforms 4.9 AP with R101
backbone and 8.3 with Swin-L. All models are pretrained on LVIS
dataset.

baseline, we used the click positions to extract the masks
which have an overlap with the clicks for evaluation. Fig-
ure 4 shows the Precision-Recall (PR) curve, which demon-
strates that click inputs drive the segmentation process to
focus on the users’ click positions and improve the overall
precision and recall for all the feature extraction backbones.
Table 1 and 2 show the Average Precision (AP) while test-
ing on the LVIS validation dataset and our DistractorReal-
Val. We split our instances into small (≤ 32× 32), medium
(32 × 32 to 96 × 96), and large (≥ 96 × 96) and evaluated
them separately. The gains of the Average Precision (AP)
show the evidence that click embedding helps improve the
segmentation performance.

Comparisons with Interactive Segmentation. Though
our method is trained with only positive clicks for the spe-
cific distractor removal applications, it is still worth com-
paring our model with other state-of-the-art interactive seg-
mentation in terms of precision and interaction behaviors.
In this paper, we compared RiTM [26], and FocalClick [4]
by using their optimal iterative strategies of sampling posi-
tive and negative clicks during testing to mimic user inter-
action behaviors. For our method, we follow RiTM to form
the positive click sequence. Since we do not have nega-
tive clicks, we only check the False Negative (FN) region
for the new next click and compute the peak value of the
distance map of the FN region to place the click. Figure 5
shows the changes in average IoU as we added more clicks.
For a fair comparison, all the models were trained using the
same combined COCO and LVIS dataset, and some base-
lines have the same feature backbones. We tested them on
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Figure 5. IoU comparison among different state-of-the-art interac-
tive segmentation works including RiTM [26] and FocalClick [4]
on LVIS validation set and our DistractorReal-Val set.

IDS PVM AP APs APm APl AR ARs ARm ARl

34.1 21.0 35.2 39.4 41.0 31.1 41.1 50.9
X 33.7 21.9 34.6 39.5 39.0 30.6 39.2 47.2

X 34.4 18.7 35.8 42.5 47.0 36.3 47.2 57.4
X X 42.4 35.6 43.4 44.2 49.7 44.5 50.5 54.2

Table 3. The Group Selection Performance Gain Using IDS and
PVM modules. IDS: Iterative Distractor Selection, PVM: Proposal
Verification Module.

both the LVIS validation set and our DistractorReal-Val set.
As shown in Figure 5, our model, regardless of feature

backbones, had a steady behavior for small and medium ob-
ject segmentation. Notice that we achieved a high IoU with
only one single click. The behavior is desirable for dis-
tractor selection since users may want a quick and precise
selection for small and medium objects but not use more
clicks to refine the boundary. The curves of RiTM and Fo-
calClick are both increasing due to the existence of nega-
tive clicks, so their methods can remove false positive re-
gions to improve the segmentation in the process. How-
ever, relying more on negative clicks during training also
worsens the first-click results. For the distractor selection
task, our method has two advantages: high response to the
first click and keeping steady and better while adding more
clicks without causing large false positive regions. More
results are in the supplementary materials.

5.3. Group Distractor Selection

We evaluated our group selection performance on the
DistractorSyn-Val dataset using the proposed CPN, PVM,
and the iterative process (IDS). Table 3 lists the perfor-
mance difference if we change the pipeline components



Input + Click Mask2Former EntitySeg FocalClick RiTM Ours(1-click) Ours(IDS+PVM)

Figure 6. Distractor selection comparison using different off-the-shelf segmentation models on our real user images (upper row) and
synthetic data (bottom row). Models trained for panoptic segmentation tasks like Mask2Former and EntitySeg cannot focus on small and
tiny objects well. Interactive segmentation works rely one negative clicks to shrink the selecting regions, and they cannot behave like
clicking-one-selecting-all. Our SimpSON works well for small and tiny distractors, and can select similar things in a group.

L1→ L2→ L3 Mask Query size AUC-PR (%)

1/4→ 1/8→ 1/16 X 3× 3 40.43
1/4→ 1/8→ 1/16 3× 3 35.08
1/16→ 1/8→ 1/4 X 3× 3 37.00
1/4→ 1/8→ 1/16 X 5× 5 36.62
1/4→ 1/8→ 1/16 X 7× 7 34.14

Table 4. Ablation study on Click Proposal Network (CPN) on
DistractorSyn-Val.

when running the selection. Recall that after we apply CPN
to propose clicks and feed those clicks to 1C-DSN for mask-
ing, we can use PVM to reject false positives, so it possibly
decreases the overall recall rate a little bit. At the same time,
the iterative process (IDS) will generate more click propos-
als in the photos to boost the recall rate. Combining the two
strategies (IDS and PVM), therefore, yields the best overall
performance on our synthetic validation set. Figure 6 shows
some examples when testing the model on both real and
synthetic data. Compared with other off-the-shelf segmen-
tation models, our single-click based model has a higher
response to tiny distractors and is functional in interactive
group selection. Our 1C-DSN is trained on a real distractor
dataset, while the group selection pipeline is trained on a
synthetic dataset. We found our model generalizes well to
find similar objects in real images in Figure 1 and 6.

5.4. More Ablation Studies

Ablations on CPN and PVM Module. We conducted
ablation studies on the design of Click Proposal Network
(CPN) in Table 4. We found that zeroing out irrelevant fea-
ture patches using masking was necessary to avoid a high
false positive rate. If we enlarged the query patch size, the
query vector would become more localized, so it yielded a

Scale Square Mask AP APs APm APl AR ARs ARm ARl

X X 42.2 35.2 43.2 43.9 48.5 44.2 49.7 53.8
X X 42.3 34.4 43.3 44.1 48.7 44.1 50.2 54.1
X X 42.0 33.5 43.1 44.8 43.7 43.7 49.4 53.6
X X X 42.4 35.6 43.4 44.2 49.7 44.5 50.5 54.2

Table 5. The performance of PVM with different input information
on DistractorSyn-Val.

higher false positive rate. The order of the feature map in-
putting to different layers of the transformer decoder was
also important since starting the matching from the largest
feature map would possibly lead to better feature aggre-
gation. Several design details of the Proposal Verification
Module (PVM) have been compared in Table 5. Our ab-
lation experiments demonstrate that all three designs con-
tribute to improving precision and recall.

6. Conclusions

We presented SimpSON, an interactive selection net-
work for distractor segmentation in photos. Distractors are
often small, repeated, clustered, and belong to unknown cat-
egories. To address this challenge, we optimized a single-
click-based segmentation network and mined all the dis-
tractors similar to the click using Click Proposal Network
(CPN) for group selection. We found that applying the CPN
iteratively and using an additional Proposal Verification
Module (PVM) made the selection more robust by avoid-
ing false positives. Our experiments demonstrated that ac-
tive click-guided segmentation yields better precision-recall
than passive retrieval of masks from a pre-computed seg-
mentation map. We believe that our pipeline will simplify
the process of photo retouching and inspire new directions
for interactive segmentation research.
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Figure 8. The overview of our distractor synthesis pipeline. The algorithm copies real distractors and objects from LVIS database to target
RoI with the help of Segmentation Network. The green box indicates the zoomed-in region before and after the synthesis pipeline. (Best
view in digital color image.)

1. Distractor Synthesis Pipeline

We present the algorithm of our dataset synthesis pro-
cedure in the Algorithm 2. The “DistractorSyn14k” and
“DistractorSyn-Val” datasets are obtained as described in
the main paper. For each Region of Interest (RoI), which
refers to the segmentation stuff regions where we intent to
copy the distractors to, we sample a set of distractor objects
from our self-collected real distractor dataset, and also nor-
mal objects from LVIS database. We name them “distractor

samples”. The number of copies n for each sample is con-
strained by ensuring the total area of the pasted distractors
is not exceeding 10% of the RoI. We apply random spatial
and color augmentation including random flip, scale, rotate,
brightness and contrast adjustment to those distractor sam-
ples before copying and pasting them. Gaussian smooth-
ing is also applied while blending them with the image to
avoid sharp composition boundary artifacts. It will avoid
the model from overfitting the seams. The positions of the

1



Algorithm 2: Distractor Synthesis Pipeline
Data:
I: Image
D = {(pi,mi)}: Real sample distractor set
S = {(ri, si)}: RoI segmentations
ri: RoI mask
si :RoI label
P = {(pi,mi, ci)}: LVIS sample small-object set
pi: Sample image
mi: Sample mask
ci: Sample RoI label
Result: Isyn, Dsyn

Dsyn ← D;
Isyn ← I;
for ri, si in S do

D′ ← distractors inside ri;
r′i ← ri \ {mi|mi ∈ D′};
if |D′| < 3 then

P ′ ← random from P s.t. ci = si;
D′ ← D′ ∪ P ′;

D̄′ ← total area of distractors in D′ ;
n← d10%× area(r′i)/D̄

′e ;
for d in D′ do

pj ← image crop in d (real or LVIS);
mj ← mask crop in d (real or LVIS);
for k in 1..n do

δi ← distance map of r′i;
x, y ← center coordinate in δi;
p′j ,m

′
j ←augment pj ,mj ;

Move p′j ,m
′
j to (x, y);

I ′syn ← blend p′j to Isyn;
if ‖hist(I ′syn(x, y))−
hist(Isyn(x, y))‖ > 0.001 then
Isyn ← I ′syn;
Dsyn ← Dsyn ∪ {(p′j ,m′j)};
r′i ← ri \m′j ;

end
end

end

distractor placement can be decided by the distance map
peak value, and the details are shown in the Algorithm 2.

Fig. 8 illustrates the entire process and intermediate re-
sults of our data synthesis pipeline. We tend to make the
synthesized images look realistic, though the compositional
artifacts still exist. The resulting images still look natural
enough since the distractor samples are from real distractor
datasets and real small objects. According to our experi-
ments, using synthetic data will not greatly influence the
generalization ability of the model to real images. More im-
age harmonization and deep composition techniques can be

further explored in the future work. Some other results are
shown in Fig. 9. Our synthetic images are comparable with
real distractor ones which can be used to train and evaluate
the CPN module. Our images contains many repeated dis-
tractors with diversity in appearances and categories, simu-
lating the properties of distractors in the real-world.

2. More details about the Distractor20K
dataset

Our dataset Distractor20K is collected to have 107 differ-
ent categories belonging to 28 super categories. There exist
known and unknown categories that label unrecognizable
regions or not in the defined category set. Both stuff and
things are considered distractors in our dataset; in detail,
there are 79 object categories and 28 non-object categories.
If we follow the LVIS dataset to split the categories based
on their frequencies, there are 13 rare, 25 common, and 69
frequent categories in our collected dataset. The number
of instances and images for each category can be seen in
Fig. 10. Rare categories appear in a maximum of ten im-
ages in the entire dataset, while common categories have
less than 100 images. All the category names are hidden for
commercial use.

The Fig. 11 illustrates the histogram of a number of dis-
tractor categories for each image. An image can have up to
25 categories of 15 super categories, and the average con-
tains 3-5 categories.

Figure 12 shows the histogram of the ratio of the instance
mask size over the image size in our Distractor20K. Ac-
cording to the statistics, we found that a significant amount
of distracting instances are medium and small, as tiny as
only occupying 0.01 of the image. Those distractors can
be stones on the ground, graffiti on the wall, leaves on the
water’s surface, fire valves on the ceiling, etc. Photogra-
phers have the requests to clean those things from the pho-
tos, while existing segmentation models do not help seg-
ment them automatically.

3. More Results of 1C-DSN
3.1. Existence of Negative Clicks

Additional experiments are executed with FocalClick
and RiTM on the LVIS dataset. To validate the capability
of those models with the one-click procedure, we finetuned
the models on LVIS dataset with only one positive click as
input. In testing, the click generator is customized to pro-
duce positive clicks only. No additional clicks are added
when there are only a few false negatives at the boundary
because clicking at the boundary can cause severe accuracy
degrading due to the precision of click positions.

The Fig. 13 shows the performance of Interactive Seg-
mentation models in two different clicking strategies. The
public weights are used in the positive-negative strategy,



Synthesized Distractors
(Top to Bottom: Origin image, Synthesized image, Zoomed Patches)

Real Distractors

Figure 9. Examples of synthesized and real distractors. Similar to real photos, our synthesized database contains distractors with different
appearances and categories. (Best view in digital color image.)

Figure 10. Frequencies of categories in the Distractor20K

while our finetuned models are tested with positive clicks
only. All frameworks using the positive-click strategy, in-
cluding ours, do not receive large improvements without
negative clicks to refine the boundary. In contrast, the

Figure 11. The number of categories in each image in the Distrac-
tor20K

Figure 12. The number of instances regards to the object size in
our distractor datasets.



performance of RiTM and FocalClick using the positive-
negative strategy increases by adding more negative clicks.
It demonstrates the existence of negative clicks indeed helps
to improve the overall masking performance with multiple
clicks from the users.

However, for both RiTM and FocalClick, the existence
of negative clicks also does harm to the performance when
there is only one single positive click. As shown in Fig. 13,
in the first positive click, the new finetuned models achieve
higher results than the ones using negative clicks in train-
ing. As we mentioned in the main paper, distractors are
mostly medium and small objects, and users prefer to use
fewer clicks for them. Therefore, the positive-click strategy
is more suitable for distractor removal and photo-cleaning
applications. Following this core idea and under fair com-
parison, our framework achieves reasonable performance
with one positive click than the other two interactive seg-
mentation models.

Some qualitative results of different click samplers on
LVIS val set are shown in Fig. 14. The backbone used is
MiT-B3. Other models with more negative clicks help to
improve the detailed segmentation boundary and achieve
overall better results. However, our model obtains bet-
ter masking quality than one-positive-click finetuned Fo-
calClick and RiTM, and requires less user effort to select.
The one-click system also helps with group selection sce-
narios later in the pipeline.

3.2. Randomness of Clicks

To evaluate the robustness of models with different click
positions, we increase the randomness of clicks surround-
ing the object’s center. Let dmax be the peak value in
the distance map ∆, which localizes in the center of the
object. The randomness level r defines a threshold such
that the clicks are placed among all positions with di ≥
(1.0 − r) × dmax. When clicks are always at the object

Click
Embedding

IDS PVM AP (%) AR (%)

28.9 39.2
X 29.9 39.0

X 23.0 42.2
X X 26.7 42.0

X 34.1 41.0
X X 33.7 39.0
X X 34.4 47.0
X X X 42.4 49.7

Table 6. Performance of EntitySeg (SwinL) and 1C-DSN (SwinL)
on DistractorSyn-Val set. The click embedding helps producing
better exemplar masks then improve the performance in finding
similar distractors.
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Figure 13. Performance of Interactive Segmentation with different
click procedures. Without negative clicks, the current Interactive
Segmentation models cannot achieve higher performance when in-
creasing the number of clicks. Our models outperform the model
with only one positive click, which better suits the distractor se-
lection task.

center, the randomness r is zero. Otherwise, when the click
can be anywhere in the mask, the randomness r = 1.0. The
Fig. 15 presents the decrease in performance when increas-
ing the randomness of click positions. All models are fine-
tuned on LVIS dataset with one positive click procedure.
With small objects, the randomness level does not affect
the IoU significantly. However, the performance goes down
quickly with medium objects when increasing the random-
ness from 50% to 80%. Our performance still remains high
with a large randomness level, indicating the model’s ro-
bustness to click randomness.

3.3. Similarity Findings without Click Embedding

We show in Table 6 the performance of EntitySeg [10]
model in similarity finding and group selection. This exper-
iment aims to ensure that our one-click-based segmentation
model is necessary for the group selection scheme.

We simply apply our CPN and PVM modules to an En-



Image GT FocalClick
(pos click)

FocalClick
(pos+neg click)

RiTM
(pos click)

RiTM
(pos+neg click)

1C-DSN 
(pos click)

Figure 14. Qualitative results of different click samplers and frameworks on LVIS val set. With only one positive click, our model 1C-DSN
can select perfect masks of objects while other frameworks require negative clicks. Except for RiTM using HRNet32, other frameworks
use MiT-B3 as backbones. (Green: positive click, Blue: negative click. Best view in digital color)
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Figure 15. The performance of one-positive-click models drops
when increasing the randomness of click locations.

titySeg model (without click embedding inputs) finetuned
on Distractor20K dataset. We use the model predictions on
one image to extract exemplar masks for the CPN and PVM
modules. For the clicks which do not have corresponding
masks, no further steps are executed and then the prediction
output will be empty. Without running IDS or PVM, the En-
titySeg model provides lower recall and precision than our
models. The Fig. 16 gives typical failure cases of EntitySeg
models. Masks can be over-segmented or wrongly detected
by EntitySeg without click inputs. Therefore, adding either
IDS or PVM steps does not improve the final results for En-
titySeg baseline model.

4. Compare CPN with Other Self-similarity
Methods

Related Works. Self-similarity is a commonly used tech-
nique in vision tasks to find repeating patterns and learn bet-

Figure 16. Typical failure cases of EntitySeg (left) without click
embedding on DistractorSyn-Val set. EntitySeg baseline may
over-predict or under-predict the masks making the self-similarity
mining not reliable enough. Our framework (right) still has good
predicted mask. Both models using Swin-Large backbone and are
trained on Distractor20K. (Best view in color)

ter globally consistent features. It has been used in various
models, including non-local network [22], contextual at-
tention [24], self-attention [15, 19], and transformer-related
models [3, 6, 21, 23]. Attention has also shown to benefit
almost all vision models, including image super-resolution
[7], object detection [20, 26], and image synthesis [2, 4, 5],
among others [8, 9, 13, 14, 18]. The most similar work re-



Image (with click) Pixel-wise Patch pyramid CPN (Ours)

Figure 17. Our framework produces cleaner heatmaps than other naive self-similarity methods. Red eclipses indicate the false or missed
detection regions. Images are from DistractorSyn-Val dataset. (Best view in color)

lated to our task is visual counting [1, 11, 12, 16, 17], which
aims to localize all similar objects within the same images
by actively sampling a few of them. However, visual count-
ing works do not require masking the objects, and the tar-

gets of visual counting are usually the main subjects of the
photos. In our task, we may face more complicated and
challenging image contexts, where diverse context yields a
high false positive detection rate. To address this issue, we



Figure 18. Precision-Recall of heatmaps predicted by different
similarity finding approaches on DistractorSyn-Val. Our models
has higher precision than other methods.

leverage a transformer decoder to learn cross-scale attention
and generate the attention heatmap, along with an additional
verification scheme to remove false positives.

Point Detection Precision and Recall. To evaluate the
performance of the CPN module in similarity heatmap gen-
eration, we use Area Under the Curve of Precision-Recall
(AUC-PR) on the similarity heatmap. The metric is used
in Table 4. A click located at the ground-truth mask region
is counted as a true positive; otherwise, it is counted as a
false positive. The precision is the proportion of true pos-
itive clicks and the total predicted clicks. The recall is the
ratio between the number of masks having predicted clicks
over the total of masks. We compute precision and recall in
different thresholds to get the curve between them.

Pixel-wise Dot Product Similarity. Since there are no
previous works on distractor similarity findings and it is not
fair enough to directly compare with visual counting works,
we can only compare our CPN with some naive baselines.
With the finer feature map X1 ∈ Rh×w×d and the mask M ,
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Figure 19. The increasing number of iterations improves the Aver-
age Recall while maintaining the Average Precision. The compu-
tational cost is also increased. The performance is saturated after
about five iterations.
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Figure 20. The performance of IDS increases proportionally with
the number of exemplars and the computational cost.

we compute the query vector q ∈ Rd by Masked Global Av-
erage Pooling [25]. The dot product similarity is then com-
puted between X1 and q to get the heatmap H ∈ Rh×w.

Pyramid Patch Matching. We firstly build the 3-level
pyramid features of X1 with the scales 1

4 ,
1
8 , and 1

16 of the
original image. With the query mask, the query patch fea-
ture q ∈ R3×3×d is extracted by RoI-Align. By sliding the
query patch feature on the feature pyramid, we can compute
the similarity at each location to the query patch with Sum
Squared Distance (SSD). The final heatmap is the average
of responses of all pyramid levels.

Comparing with our CPN. Fig. 17 shows the differ-
ences in heatmaps produced by different methods. Pixel-
wise similarity can cause many false positives, while the
patch pyramid approach is not robust to objects with vari-
ant appearances. Our proposed method generates cleaner
heatmaps with high precision. The precision-recall curve
of three methods on DistractorSyn-Val is shown in Fig. 18.
Our method outperforms other baselines with the balance
between precision and recall rate.

5. Hyper-parameters of IDS
The following sections evaluate the performance of

our proposed IDS with different hyper-parameters on
DistractorSyn-Val. All experiments are with the SwinL
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Figure 21. Accepting more clicks in each iteration improves the
performance and the speed. However, memory usage also grows
as a result.



Figure 22. Our model also performs well with large objects.

Figure 23. The robustness of our model when clicking on different objects.

backbone and trained on DistractorSyn14K. The pretrained
weights on DistractorReal20K are used for feature extrac-
tion and mask generation modules. If not explicitly stated,
all experiments have default hyper-parameters: the number
of iterations N = 5, the number of exemplars m = 3, and
the number of accepted clicks for each iteration k = 10. To
make the comparison consistent, the PVM does not validate
the outputs at each iteration.

Besides the Average Precision (AP) and Average Recall
(AR), we also compute the time and GPU memory com-
plexity of different hyper-parameters. While the time is
measured before starting IDS until the last iteration, the
GPU memory is the additional cost raised by the IDS, not
by the whole network. The memory amount is computed
with PyTorch API.

5.1. Number of Iterations

The Fig. 19 illustrates the performance of IDS with dif-
ferent numbers of iterations N . When N = 1, all proposal
clicks are accepted, which are equivalent to the non-IDS
experiment. Other experiments use the default value of
k = 10 by default. There is a trade-off between compu-
tational cost and the performance of the framework when
increasing the number of iterations. The AR increases pro-
portionally to N until the fifth iteration. Because almost
all clicks have been accepted after five iterations, contin-
uously running the CPN after that only yields incremental

improvements.

5.2. Number of Accepted Clicks

The results of different accepted clicks for each itera-
tion are shown in Fig. 21. The performance and speed of
the entire IDS process increase When accepting more clicks
for each round. However, it also consumes more memory
for mask generation. In practice, depending on the occur-
rence of distractors in the image, we can balance between
the number of accepted clicks and the number of iterations
to achieve the best results.

5.3. Number of Exemplars

We change the number of exemplars used for querying
similar objects in each iteration of IDS process. The results
are shown in Fig. 20. An increasing in the number of exem-
plars significantly rises the time and memory complexity.
Additionally, the AP and AR are also improved with more
exemplars.

6. Additional Qualitative Results
Our framework not only works with tiny distractors but

also yield good results on large objects. Fig. 22 shows some
examples where the selecting objects are larger than 10%
of the image. Besides, Fig. 23 illustrates the robustness of
our model in which the results are consistent while different



Image 1C-DSN CPN PVM Clean  (Photoshop)

Figure 24. Some intermediate results without IDS process. Our CPN successfully finds similar objects with a high recall rate, and PVM
correctly removes false positives to clean. (Best view in color and zoom-in)
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Figure 25. The progress of cleaning photos with IDS. For each iteration, some new similar distractors are detected, and the photos become
cleaner than in the previous step. In the end, all distractors are removed from the image. (Best view in color and zoom-in)

objects are clicked.

Some additional results on real photos are shown in the
Fig. 24 and Fig. 25. In some simple cases where there are
not many repeated distractors, the CPN and PVM frame-
works can work perfectly without IDS process. The CPN
tries to achieve a high recall rate, and then the PVM helps
increase precision by removing outliers.

The Fig. 25 shows some extreme cases where many sim-
ilar distractors appeared, and the IDS joins in selecting all
similar distractors with only one click. The photos get
cleaner after each iteration because more distractors are se-
lected and removed.
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